Curricular Components for Infectious Diseases EPA

<table>
<thead>
<tr>
<th>1. EPA Title</th>
<th>Management of previously healthy patients with a pediatric infectious disease.</th>
</tr>
</thead>
</table>
| 2. Description of the activity | A key role for subspecialists is to provide consultation for the provision of medical care of previously healthy children with proven or suspected uncomplicated, complicated, unusual, or enigmatic infections in the hospital and outpatient settings. In addition, subspecialists will provide consultation to critically ill pediatric patients with an infectious disease in the hospital and outpatient settings. The specific functions which define this EPA include:
- Demonstrating knowledge of pediatric infectious diseases by focusing the clinical question to distinguish high and low priority of various diagnoses.
- Obtaining essential information to develop and prioritize a working differential diagnosis of potential infectious diseases
- Performing a thorough physical exam relevant to the clinical question(s)
- Recommending specific laboratory tests to confirm or exclude diagnoses based on the differential diagnosis
- Applying knowledge about the pathophysiology of unusual, complex, and fulminant pediatric infectious diseases to formulate appropriate diagnostic and therapeutic management plans.
- Choosing empiric antimicrobial therapy based on the differential diagnosis, the most likely diagnosis and the local antibiogram
- Developing targeted antimicrobial therapy including dosing, duration, and route of administration for specific infectious diseases, with use of culture and susceptibility results
- Accessing and applying medical literature that is critical to the patient, recognizing tiers of evidence and areas in which there is a lack of evidence
- Building a therapeutic alliance in a collaborative manner with the primary patient team by advocating infectious disease recommendations to members of the health care team, patients, and families
- Participating in infectious disease related follow up care |
| 3. Judicious mapping to domains of competence | X Patient Care
X Medical Knowledge
X Practice-based Learning and Improvement |
Interpersonal & Communication Skills
Professionalism
X Systems-based Practice
X Personal and Professional Development

4. Competencies within each domain critical to entrustment decisions

PC 1: Gathering information
PC 5: Performing complete physical exams
PC 6: Using optimal clinical judgment
MK 2: Practicing EBM
PBLI 9: Educating others
PBLI 10: Engaging in lifelong learning
SBP 3: Incorporating cost awareness into care
SBP 4: Advocating for quality care
PPD 8: Dealing with uncertainty

5. Curricular Components that support the functions of the EPA (knowledge, skills and attitudes needed to execute this EPA safely):

Rationale: Pediatric Infectious Diseases physicians must be able to diagnose and treat previously healthy children with acute, subacute and chronic infectious diseases that range from simple to complicated, common to rare, and relatively minor to life threatening infections in the hospital and outpatient settings.

Scope of Practice: The scope of practice for a practicing Pediatric ID clinician includes consultative work in both inpatient and outpatient settings, as well as more comprehensive care in some hospital and outpatient settings (e.g. HIV care). Part of the role of the ID clinician is to provide education for other care providers when acting in a consultative role. Anticipatory guidance should be provided to patients and families, and realistic treatment goals should be set. The patient population includes neonates through young adults, and sometimes beyond. This document is intended to address the scope of knowledge and skills of the Pediatric ID physician caring for previously healthy patients with infection in hospital and clinic settings.

Curricular components that support the functions of the EPA:

Demonstrating knowledge of pediatric infectious diseases by focusing the clinical question to distinguish high and low priority of various diagnoses

- Develops skills in which to frame the consultation in terms of a clinical question relevant to the patient and their disease process(s).
- Reframes the original clinical question in order to provide the best care of the patient.
- Interprets the differential diagnosis in terms of most likely to least likely disease process and prioritizes laboratory testing in this fashion.
- Determines which diseases in the differential diagnosis are most likely to cause rapid deterioration in the near term, and thus may require rapid testing and/or empiric therapy.
- Provides a thorough rationale for the order of the differential diagnosis based on clinical history, examination findings, laboratory and radiological results, and disease epidemiology.
- Continually re-evaluates the differential diagnosis as results of testing are known and the clinical course evolves.

Obtaining essential information to develop and prioritize a working differential diagnosis of potential infectious diseases
- Determines possible risk factors for an infectious disease including behavioral (e.g. high risk sexual behaviors), travel related (e.g. malaria), food and beverage related (e.g. ingestion of preformed toxin or contaminated food/water), previous vaccinations, and animal or other environmental exposures.
- Interprets the timeline of the patient’s clinical course in terms of what is known about the suspected or proven disease process, with an open mind to include uncommon or rare features of disease which may manifest outside of an expected time frame or sequence.
- Carefully considers all aspects of verbal and written history (e.g. review of medical record, patient and family interview, discussion with referring physician) provided to develop and then determine the likelihood of various infectious possibilities in the differential diagnosis.

Performing a thorough physical exam relevant to the clinical question(s)
- Determines the general state of the patient to be acutely, subacutely or chronically ill.
- Distinguishes abnormal and key normal findings relevant to the suspected infectious process on physical exam.
- Interprets physical exam findings in the context of the patient’s history and clinical features of the suspected infectious process.
- Synthesizes history and clinical findings into a unified diagnosis when possible.

Recommended specific laboratory tests to confirm or exclude diagnoses based on the differential diagnosis
- Applies knowledge of the major routes of transmission/acquisition of microorganisms (e.g., type of contact, common vehicle, airborne, vectorborne) when recommending laboratory testing.
- Recognizes the major sources and reservoirs of different microorganisms, including sites of colonization and shedding.
- Applies a working knowledge of appropriate specimen collection, handling and processing, and test performance characteristics in the decision to obtain a given test (e.g. sensitivity, specificity, PPV, NPV).
- Determines the settings in which it is most appropriate to obtain culture, serology, antigen, and/or nucleic acid testing.
- Analyzes test results within the clinical context of the patient’s presentation to determine the likelihood of a diagnosis.
- Prioritizes testing for treatable pathogens in the setting of low likelihood (e.g. HSV testing in the setting of encephalitis).
Recognizes costs associated with specific laboratory tests and seeks to mitigate costs by judicious use of testing (e.g. vancomycin levels in patients with normal renal function prior to reaching steady state equilibrium).

Applying knowledge about the pathophysiology of unusual, complex, and fulminant pediatric infectious diseases to formulate appropriate diagnostic and therapeutic management plans.

- Recognizes subtle differences between seemingly similar presentations of common infections and rapidly progressive or severe infections (e.g. cellulitis vs. necrotizing fasciitis).
- Recognizes host factors which influence the risk of severe or rapidly progressive disease (e.g. encapsulated organisms in the young child).
- Recognizes patterns and/or constellations of signs and symptoms for various severe infections (e.g. erythroderma and Toxic Shock Syndrome [TSS]).
- Makes a plan to escalate therapy in situations in which the patient is not clinically improving and as the clinical diagnosis evolves.
- Knows how host factors influence the results of diagnostic testing (e.g. quantiferon result in a young child).

Choosing empiric antimicrobial therapy based on the differential diagnosis, the most likely diagnosis and the local antibiogram

- Develops an empiric therapy management plan for the following common infections including:
 - Upper respiratory/ lower respiratory
 - CNS (meningitis, brain abscess)
 - ENT (peritonsillar, retropharyngeal, mastoiditis, acute otitis media)
 - Osteoarticular
 - Lymphoreticular
 - Genitourinary/renal
 - Intraabdominal / intestinal/ hepatobiliary
 - Skin/soft tissue/ muscle
 - Reproductive/sexually transmitted
 - Cardiovascular/endovascular
 - Ophthalmologic infections
 - Odontogenic infections
 - Vasculitides/Kawasaki Disease
 - Systemic syndromes (e.g. Systemic Inflammatory Response Syndrome, Tick borne, TSS)

Developing targeted antimicrobial therapy including dosing, duration, and route of administration for specific infectious diseases, with use of culture and susceptibility results

- Recognizes sites that require higher antimicrobial dosing (e.g. central nervous system infections) and the appropriate mode of antimicrobial delivery (e.g. parenteral vs. enteral).
• Uses knowledge of local epidemiology and antibiogram to guide empiric therapy.
• Uses susceptibility results including minimum inhibitory concentrations (MICs) to
determine definitive therapy and instances when more specific resistance testing
should be performed (e.g. D test for clindamycin resistance in the setting of
erthromycin resistance).
• Uses antimicrobial specific pharmacokinetics (PK) and pharmacodynamics (PD)
data to achieve therapeutic targets.
• Knows when specific drug monitoring is necessary for therapeutic and toxicity
monitoring purposes (e.g. vancomycin and gentamicin).
• Identifies when combination therapy is needed to adequately treat an infection
(e.g. enterococcal endocarditis).
• Develops an appropriate plan for transitioning from parenteral to enteral therapy
based on clinical response to treatment and antimicrobial characteristics.
• Utilizes the existing literature to determine appropriate duration of therapy for
various infectious disease processes (e.g. community acquired pneumonia,
ostearticular infection).
• Determines whether specific antimicrobials are able to treat infections in specific
body sites (e.g. daptomycin is inactivated in lung tissue).
• Develops an appropriate plan to select second-line antimicrobials in the setting of
drug allergies, interactions, or other contraindications to typical therapy for
common infections.

Accessing and applying medical literature that is critical to the patient, recognizing tiers of
evidence and areas in which there is a lack of evidence
• Understands and interpret the grading system for levels of evidence for clinical
practice guidelines (e.g. community acquired pneumonia, MRSA).
• Develops clinical questions using a PICO format

<table>
<thead>
<tr>
<th>P</th>
<th>Patient, Population, or Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Intervention, Prognostic Factor, or Exposure</td>
</tr>
<tr>
<td>C</td>
<td>Comparison or Intervention (if appropriate)</td>
</tr>
<tr>
<td>O</td>
<td>Outcome you would like to measure or achieve</td>
</tr>
</tbody>
</table>

- Plans a literature review based on a clinical question and evaluates and applies the
available evidence.
Develops an approach to clinical scenarios with conflicting, weak, or no evidence while incorporating patient and family preferences.

- Extrapolates data from the nearest neighbor evidence when needed in order to make informed therapeutic decisions (e.g. using data on use of linezolid for treatment of meningitis in the setting of shunt infections).

Building a therapeutic alliance in a collaborative manner with the primary patient team by advocating infectious disease recommendations to members of the health care team, patients, and families

- Utilizes open and ongoing communication strategies between the primary team, patient, family, and consult team in a culturally respectful manner.
- Acts in a collaborative manner with interdisciplinary team members who are also involved in the care of the patient, while recognizing when it is appropriate to advocate for infectious diseases specific recommendations.
- Recognizes when a care conference or team meeting should be utilized to align patient/family engaged in multi-team interactions.
- Distinguishes instances in which patient advocate involvement may be beneficial for the patient and family.
- Recognizes diagnoses in which collaboration with another subspecialty is indicated (e.g. neurology in setting of encephalitis, orthopedics in septic arthritis).

Participating in infectious disease related follow up care

- Knows when follow up in infectious diseases clinic is indicated and how frequently visits should occur.
- Arranges for appropriate laboratory monitoring and assesses laboratory results (e.g. vancomycin levels, CBC monitoring with long term use of beta-lactam antibiotics).
- Plans necessary laboratory testing, based on the referral reason, during follow up appointments for infectious diseases (e.g. HIV, Hepatitis B, Hepatitis C, RPR testing in victims of sexual assault).
- Communicates effectively with primary care pediatricians, referring physicians, public health workers, patients and families to coordinate care and to provide key information for ongoing care.
- Knows when to refer patients to other subspecialties based on their clinical history and suspected disease process (e.g. referral of a patient to GI in the setting of suspected inflammatory bowel disease).