Principled Assessment Frameworks

Engineering the Future of Test Development

Matthew J. Burke, Ph.D.
May 15th, 2015
The future of testing is:

• Reliably predicting and controlling the difficulty of test items...
Assessment Engineering

• One of a class of principled assessment frameworks
 • Evidence-centered Design (Mislevy), Principled Design for Efficacy (Nichols), Principled Assessment Designs for Inquiry (IERI)

• Comprehensive, model-based view of test development, administration, and scoring

• Offers potential of both theoretical and practical improvements
 • Construct validity, Response processing validity
 • Item development, calibration, and scoring
Components of Assessment Engineering

• Construct Map
 • Visual representation of the score scale
 • Demarcates ordered proficiency claims relative to the scale

• Task Models
 • Aligned with the ordered proficiency claims
 • Each model represents a family of items providing comparable information

• Templates
 • Item rendering blueprints
 • Provide instructions for producing item isomorphs
Components of Assessment Engineering: Accounting Specific Example

- Evaluates, interprets, searches, and analyzes multivariable systems
- Analyzes and interprets relationships between elements of a single system
- Computes multiple values from formulas
- Defines basic accounting concepts

Decreasing Proficiency

Task Models

- Template C1
 - Rendering data
 - Scoring evaluator
 - Task model data

- Template C2
 - Rendering data
 - Scoring evaluator
 - Task model data

- Template C3
 - Rendering data
 - Scoring evaluator
 - Task model data

- Template C4
 - Rendering data
 - Scoring evaluator
 - Task model data

Item Templates

- Item C1.xxx
 - Item C1.002
 - Item C1.001

- Item C4.xxx
 - Item C4.002
 - Item C4.001

- Item AA3.xxx
 - Item AA3.002
 - Item AA3.001
Defining a taxonomy of skills

• Criteria of a cognitive taxonomy
 • Grain size, relevance, measurable, *hierarchical*
 • Revised Bloom’s Taxonomy (Anderson et al., 2001)

• Distilling the requisite skills
 • Cognitive task analysis (CTA)
 • Reverse-engineering
 • Structure of the skills
 • *hierarchical*, distinct, identifiable

➢ Putting it all together
 • Incorporation into test specifications, guidance of practice analysis
AE: Modified Skill/Content Specification

Prepare financial documentation for reporting and presentation purposes in accordance with Reporting Framework (US GAAP/IFRS).

1. Balance sheet (UAS) - Understand disclosure requirements (U)
2. Income statement (UAS) - Identify information that needs to be disclosed (U)
3. Statement of comprehensive income (UAS) - Identify defining characteristics of accounting terms (U)
4. Statement of changes in equity (UAS) - Categorize/classify cash flow transactions, assets, liabilities, equity (U)
5. Statement of cash flows (UAS) - Prepare adjusted trial balance (A)
6. Notes to financial statements (U) - Prepare supporting schedules or worksheets using accounting rules and procedures (A)
7. Consolidated and combined financial statements - Prepare financial statements (A)
8. First-time adoption of IFRS (U) - Prepare financial statements by combining information derived from a variety of sources (S)

- Prepare journal entries, worksheets or financial statement for consolidation with intercompany transactions (S)
Related Research

• Item difficulty modeling
 • Diehl, 2004; Embretson, 1998; Embretson and Daniel, 2008; Embretson and Gorin, 2001; Embretson and Wetzel, 1987; Gorin and Embretson, 2006

• Building/incorporating the infrastructure of AE
 • Luecht, 2015*; Luecht, 2013; Luecht, Burke and DeVore, 2009; Burke, DeVore, and Stopek, 2013; Burke and Stopek, 2013; Stopek and Burke, 2013; Burke, Stopek, and Eve, 2014; Furter, Burke, Morgan, and Kaliski, 2015

• Automatic item generation

• Automated test assembly
 • Van der Linden, 2006; Luecht, 1998

• Item family calibrations
 • Sinharay, Johnson, and Williamson, 2003; Glas and van der Linden, 2003; Geerlings, Glas, and van der Linden, 2011
<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Confirmatory, model-based approach to test development</td>
<td>- Extensive planning and preparation</td>
</tr>
<tr>
<td>- Strengthens validity argument</td>
<td>- Potential overkill in some assessment settings</td>
</tr>
<tr>
<td>- Directed item development</td>
<td>- Increased cost of test development in the short term</td>
</tr>
<tr>
<td>- Decreased cost of test development in the long term</td>
<td>- Requires niche experts in test development and modeling</td>
</tr>
<tr>
<td>- Reduced pre-testing demands</td>
<td>- Requires flexibility in pilot testing</td>
</tr>
<tr>
<td>- Standard setting/equating</td>
<td></td>
</tr>
</tbody>
</table>
Challenges

• Changing existing processes that work
• People are sometimes territorial
• Measurement concerns often follow practical and policy concerns
• Research is ongoing, work in progress
• No off the shelf products exist, must be custom made
• Doesn’t work in every case*

➢ Establishing buy-in
 ➢ Internal and external stakeholders
 ➢ We are saying this will be better, but they need to come to that conclusion on their own.